

What is the meaning of pristine nanoparticles, their lifecycle and fate? An overview and forward look

<u>Claus Svendsen</u>¹, Elma Lahive¹, Marianne Matzke¹, Carolin Schultz¹, Ana Romero-Freire^{1,2}, Soco Vazquez³, Maria Diez Ortiz^{1,3}, Alan Lawlor⁴, Daniel Starnes ⁵, Olga Tsyusko⁵, Jason Unrine⁵, Greg Lowry⁶, David Spurgeon¹ and Steve Lofts⁴

¹NERC-CEH, Wallingford, United Kingdom

²Soil Science Department. University of Granada, Spain
³ NanoHealth & Safety group, LEITAT, Barcelona, Spain
⁴NERC-CEH, Lancaster, United Kingdom
⁵Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
⁶Carnegie Mellon University, Pittsburgh, USA

Behaviour and Fate is environment dependent

Most "entities" change behaviour when moved from one compartment to another or between different Phys Chem. parameters.

Data needs for environmental RA of nano

GUIDEnano

"Read across" assumptions in the environment

Reactive nano materials in reactive environments => Transformations

"Context"

"Read across" assumptions in the environment

Hazard ranking:

=>

Mass exposure (PEC)/ Ion Hazard (PNEC) based RA Should be conservative and protective.

But what if:

Ag₂S accumulates in hotspots (biota) and dissolves late (e.g. post ingestion) => *Need to understand Exposure*

Exposure - Nanomaterial fate in the environment:

Where, what and for how long?

- <u>"Reactors" and relevant</u> <u>ENMs</u> (using the right starting materials at each step)
- **Functional fate groups** a tool to understand and reduce complexity
- Exposure assessment framework catalogue of models, parameters and methods
- <u>Multimedia fate models</u> simplified to feed regulatory models (SimpleBox for nano)

Nano

Conceptual workflow for a framework to deliver dynamic multimedia fate prediction both in a generalised model environment and GIS enabled mode.

Environmental reactors: Complex, but may they help?

Reactive nano materials in reactive environments => Transformations

Nanoparticle complexity. Schematic illustration of the competing environmental transformation and organismal uptake processes that occur for a nanomaterial in aquatic environments, illustrated using a silver nanoparticle.

Environmental reactors: Complex, but may they help?

Reactive nano materials in reactive environments => Transformations

Modified from D Mitrano & B Nowack (EMPA)

Valsami-Jones and Lynch (2015) Science

What about a mild reactor – water?

- <u>"Reactors" and relevant</u> <u>ENMs</u> (using the right starting materials at each step)
- <u>Functional fate groups</u> a tool to understand and reduce complexity
- <u>Exposure assessment</u> <u>framework</u> catalogue of models, parameters and methods
- <u>Multimedia fate models</u> simplified to feed regulatory models (SimpleBox for nano)

Conceptual workflow for a framework to deliver dynamic multimedia fate prediction both in a generalised model environment and GIS enabled mode.

What about a mild reactor – water?

• The order of sensitivity to $AgNO_3$ and 2 x Ag NPs NPs has no simple correlation

Bacteria IC50 (growth)	Type and habitat	AgNO₃ (µg/L)	5nm Ag uncoated (μg/L)	50 nm Ag PVP coated (μg/L)
B. Subtilis	gram-positive, soil (reservoir) and human gut	0.7	8	64
E. Coli	gram-negative, intestines	4	9	146
P. Fluorescence	gram-negative, soil and water	2	45	230
C. metallidurans	gram-positive, belong to bacillus, heavy metal contaminated environments	10	66	24
P. Stutzeri	gram-negative, first isolated from human spinal fluid	68	76	770
B. Megaterium	gram-positive, soil	6	90	170
J. Lividium	gram-negative, soil	13	230	68
M. luteus	gram-positive, soil/dust/water/air	0.01	1110	62

Exchange of Coating by "corona" Exchange of Coating by "corona" Lynch et al., in Frontiers of Nanoscience, 2014, Volume 7: Nanoscience and the Environment

Marianne Matzke, in prep

What about a medium reactor – soil?

- <u>"Reactors" and relevant</u> <u>ENMs</u> (using the right starting materials at each step)
- <u>Functional fate groups</u> a tool to understand and reduce complexity
- <u>Exposure assessment</u> <u>framework</u> catalogue of models, parameters and methods
- <u>Multimedia fate models</u> simplified to feed regulatory models (SimpleBox for nano)

Nanol

Conceptual workflow for a framework to deliver dynamic multimedia fate prediction both in a generalised model environment and GIS enabled mode.

Dissolution time scales can be long

SEVENTH FRAMEWORK

Coating, Uptake and Toxicity

How to access coating stability in the environment ?

 $-\left[CH_2-CH\right]_n$

PVP relatively indigestible E.g. compared to **glucose**

Sodium citrate -

somewhat toxic, rather _{Sodium} than being indigestible ^{Citrate} - due to high pH.

What about a chain of reactors – "real world"?

Conceptual workflow for a framework to deliver dynamic multimedia fate prediction both in a generalised model environment and GIS enabled mode.

NanoFASE

Real world "Aged" sewage sludge NPs trials

Three sewage sludge streams

Mixed with soil to Max. Zn loading from sewage sludges in US soils = 1400 mg Zn/kg
Aged 6months in outdoor mesocosms

Zn limit: 2800 mg/kg ♥ Equivalent Ag: 250 mg/kg

US EPA Guideline (CFR 40 part 503)

Effects on Clover nodulation

Medicago Nodulation (Legume N-acquisition)

Effects on earthworm reproduction

Soil control

6-month aged SS

Lahive, L. et. al. Environ. Sci.: Nano, 2017,4, 78-88

Reproduction + Earthworm body concentration

Reproduction + Earthworm body concentration

Real world "Aged" sewage sludge NPs trials

Question: What is different when metals arrive as NP vs. ions?

Zn-FeOOH

lon

54

ZnS

Control

Zn₃(PO₄)₂

Exposure - Nanomaterial fate in the environment:

Where, what and for how long?

- <u>"Reactors" and relevant</u> <u>ENMs</u> (using the right starting materials at each step)
- **Functional fate groups** a tool to understand and reduce complexity
- <u>Exposure assessment</u> <u>framework</u> catalogue of models, parameters and methods
- <u>Multimedia fate models</u> simplified to feed regulatory models (SimpleBox for nano)

Nano

Conceptual workflow for a framework to deliver dynamic multimedia fate prediction both in a generalised model environment and GIS enabled mode.

Exposure - Nanomaterial fate in the environment:

Where, what and for how long?

Incorporate modules into regulatory models e.g. EUSES Model

Overall conclusions

- Pristine nanoparticle info is meaningless unless the patterns found are use in context of exposure relevant forms!
- Fate determines if and where there may be possible Nano Exposures
 ⇒ Including how potent the exposure relevant form is
 ⇒Long-term fate and hazard data is needed.
- Begin with good empirical relationships between properties, reactions (e.g. coating degradation, sulphurdation and dissolution) and consequent uptake/effects –
 - Identify key "undesirable" NM behaviours
 - Link these to properties to avoid or ensure are degradable
- Tune the properties of NM products so function is maintained in use phase, while ensuring fast environment degradation of ENMs or their Nano function.

Acknowledgements: UK (NERC)/US (EPA)

www.NanoFASE.eu (EU H2020 Proj. 646002)